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Abstract:  

There has been increasing interest in how 

biological principles exhibited by the human 

brain could help inform development of more 

robust artificial neural networks. This work 

introduces a new method to try and improve 

random feedback alignment, a biologically 

plausible alternative to backpropagation, and its 

performance in new domains by using a 

feedback matrix generated through random 

initialization over the latent space representation 

of weights transferred from another domain. 

 

Introduction & Background: 

Deep learning and artificial neural networks 

have garnered a significant amount of attention 

for their successful application in a variety of 

domains with high dimensional data such as 

computer vision and natural language processing 

(Liu et al., 2017). Several advancements, of 

which the increased availability of detailed 

training data and computing power are most 

prominent, have contributed to this explosion in 

interest in, and the ability of, these methods 

since the methods were first developed in the 

eighties (Goodfellow, Bengio & Courville, 

2016).  

Although inspired by the workings of 

human brain neurons, backpropagation, one of 

the key components of modern artificial neural 

networks, has been demonstrated to be 

biologically implausible. There are a several 

reasons for this, but the one primarily addressed 

by this study has been described as the weight 

transport problem (Lillicrap et al., 2016). 

Backpropagation has found incredible success 

because it allows the upstream weights in the 

network to be updated using the copies of 

downstream errors. This is relatively trivial to do 

exactly and precisely in modern computers, but 

it as a pattern of behavior that is not observed in 

the brain. As early as the late eighties, 

neuroscientists spoke of the fact that the 

existence of backpropagation in the brain would 

require that information be rapidly transmitted 

backwards through their axons, and that this 

appeared quite unlikely to occur (Crick, 1989). 

Lillicrap et al. remarked in their 2016 paper: 

 

…whilst the brain does exhibit widespread 

reciprocal connectivity that would be 

consistent with the transfer of error 

information across layers, it is not believed 

to exhibit such precise patterns of reciprocal 

connectivity. 

 

It was due to this disconnect that 

researchers began proposing alternatives to 

backpropagation that could be biologically 

plausible and that avoided this weight transport 

problem. In 2016, Lillicrap et al. published their 

work on random feedback alignment (RFA), a 

method where random, static weights were used 

to initialize the network along the feedback path. 

Specifically, whereas backpropagation networks 

learn via the exact transpose of the error matrix 

(δBP=WTe), RFA conducts learning through a 

random projection of the error matrix (δFA=Be, 

where B is a random fixed matrix). This method 

was remarkable given its comparable 

performance on the MNIST data set to 

backpropagation and its avoidance of the weight 

transport problem. Since then a number of 

feedback alignment variants have been proposed 

expanding on progress towards more human-like 

machine learning (Nøkland, 2016). 

In fact, due to a human’s remarkable 

learning capabilities it is believed that further 

incorporating mechanisms observed in 

biological neural networks may lead to the 

increased robustness, generalizability, and/or 

efficiency of artificial neural networks (Cheung 



& Jiang, 2018; Kruger et al., 2013; Lillicrap et 

al., 2016). Conversely, it has been expressed that 

furthering our understanding of deep learning 

may lead to better insight into the workings of 

our brains (Tripp, 2018). It was for these reasons 

that this study wanted to expand on random 

feedback alignment by incorporating transfer 

learning, another biologically inspired method 

used commonly in machine learning.  

Transfer learning, or transfer of learning, is 

a concept that initially originated in psychology. 

It is intuitive and has been observed that, at a 

higher-level, humans can use learnings from past 

experiences to help make learning new tasks 

easier (Helfenstein, 2005). At a much lower-

level, it has also been observed that organisms, 

such as honeybees, have brain mechanisms to 

help them recognize novel stimuli using 

transferred representations of stimuli it had seen 

before (Giurfa, 2008). This remarkable ability of 

biological brains sparked interest in the ability to 

apply this concept to machine learning. One of 

the largest issues in machine learning is that 

models are always trained to fit their specific 

domain and moving to new data becomes 

problematic for a variety of reasons. Due to this 

gap, this transfer learning has become 

remarkably popular in recent years to address 

this issue. The process involves training a 

network on one domain with lots of data, and 

transfer aspects of the model weights to improve 

learning on a new domain; whether in respect to 

training time or efficiency, or model robustness 

(Hendrycks, Lee & Mazeika, 2019; Pan & Yang, 

2010).  

It was the belief of this author that one 

could combine these two ideas: feedback 

alignment and transfer learning. The original 

feedback alignment method proposed a 

completely random instantiation of the feedback 

matrix. However, it is unlikely and probably 

inefficient, that the brain starts learning from a 

completely random point. In this work, a 

network was trained on one domain and a 

feedback matrix for the new domain was created 

randomly on a representation of these weights 

that attempted to retain information about the 

previous domain. It was this semi-random 

matrix that was then transferred to a feedback 

alignment network to train on a new domain. 

With this transfer learning variant of feedback 

alignment, this paper contrasts it to the original 

feedback alignment method and traditional 

transfer learning with backpropagation to 

understand any potential performance gains. 

  

Methods: 

 This project made use of two data sets: the 

MNIST hand written digits and the EMNIST 

hand written letters (Cohen et al., 2017). 

Feedback alignment has shown to be very 

comparable in performance to backpropagation 

on the handwritten digit data set as was outlined 

in the initially Lillicrap et al. paper (2016). It 

was thought that there would be definite 

potential that components of this data set would 

be transferrable to performance on the letter data 

set. 

 A three layer fully connected network was 

trained on the MNIST data set using regular 

backpropagation with 784 hidden units in the 

first layer and 10 in the output layer.The 

learning rate was set to 0.5 and was trained for 

300 epochs. The final weights and error values 

were exported into binary files. It was not key 

that this network achieve high performance as 

the purpose was just to have a starting point that 

one could transfer from.  

 To iterate on potential transfer methods, an 

experimental simulator was created to measure 

their effectiveness. In Lillicrap et al., the authors 

proposed that RFA achieves similar performance 

to backpropagation when eTWBe > 0 on average 

(2016). Although this applies more strictly in a 

vector sense, what this formula implied was that 

the random matrix was pushing the teaching 

signal to be within approximately 90º of the 

signal that would have been used in 

backpropagation. With an implementation of 

this formula, one could simulate how effective 

new methods were at approximating the 

teaching signal given the weight matrix and 

error information exported from the initial 

network.  

 Using this simulator, a method was derived 

that pushed the teaching signal in a stronger 

direction than what would have happened using 

the original RFA. Using principal component 

analysis (PCA), a method of dimensionality 

reduction invented by Pearson, the final layer 

weights of the network were decomposed into a 

lower dimensional space that attempted to 



capture the variance and information encoded 

within those weights (1901). A random uniform 

distribution was created on this the latent space 

by utilizing the mean as the lower bound and the 

mean in addition to one standard deviation as the 

upper bound. The new feedback matrix was 

created by transforming this random space back 

into the original weight dimensions. 

 Several final networks were trained to 

compare performance. The original RFA, where 

the feedback matrix was drawn on a random 

uniform distribution between -0.5 and 0.5, and 

the new transfer RFA method proposed above 

were both trained back on the original MNIST 

digit data to gauge performance. Finally, on the 

EMNIST letter data the original RFA, the new 

transfer RFA, and regular backpropagations with 

traditional transfer learning methods were all 

trained to compare performance. These were all 

three layer fully connected networks with 784 

units in the first layer and 10 in the output layer 

with learning rates of 0.5 The RFA methods 

were trained for 150 epochs, while the 

backpropagation networks were trained for 300 

epochs. 

 

Results: 

 The performance of the initial MNSIT 

network trained with regular backpropagation 

can be seen below: 

 
This network achieved acceptable performance, 

and the weight and error information were 

exported to be used in transfer learning.  

As part of experimentation, this exported 

information was used to compare the methods 

based on their teaching signals. Under one 

thousand simulations, the new transfer RFA 

method appeared to push signals in a more 

favorable direction than the old RFA method 

that used a random uniform distribution between 

0.5 and -0.5.  

 
The new method appeared to push the teaching 

signal in a direction that was greater than zero 

significantly more than the old RFA.  

 Although this was promising, it was 

imperative that the method be further tested 

before proceeding. It was for this reason that the 

new transfer RFA method was trained on 

MNIST against the old RFA method. The results 

can be seen below: 

 
Although somewhat minor, one can see an 

increased slope and converged test accuracy 

after using the proposed transfer method. With 

this promising result, the final networks were 

trained.  

The two RFA methods were trained on the 

first ten letters of EMNIST letter data sets. With 

results below: 



 
The proposed transfer RFA method continued to 

provide a lift in final test accuracy as compared 

to the original RFA method on the new domain. 

The ability to transfer information encoded in 

the previous network appeared to be successful 

in some respect.  

 For further comparison, again using the 

first ten letters in the EMNIST letter data set, the 

following networks were trained: regular 

backpropagation, backpropagation with layer 

one transferred, backpropagation with layer two 

transferred, and backpropagation with both 

layers transferred. Although the network was 

trained for 300 epochs, the zoomed in results of 

the first 50 can be seen below: 

From this one can see that the first layer 

transferring was more successful than the other 

methods and much more comparable to regular 

backpropagation. 

 When comparing these traditional methods 

with the new transfer RFA, it was observed that 

transfer RFA has the advantage of starting from 

a higher test accuracy in the first epoch. 

Furthermore, by the fiftieth epoch the transfer 

RFA had reached comparable performance to 

the best of the backpropagation techniques with 

a much higher slope. However, it should be 

noted that all of these improvements were only 

marginal and further experimentation is 

definitely required to understand how these 

findings generalize to other data. 

 

Discussion: 

 The results shown here present an 

interesting iteration of the feedback alignment 

method. Creating the feedback matrix based on a 

random instantiation of a latent representation of 

weights transferred from a similar domain 

appeared to yield performance gains, albeit 

minor, in the new domain. The transferred 

matrix was appeared to be able to retain some 

information that was helpful in the learning 

process when compared to the original RFA 

method. This was further promising when 

compared to traditional backpropagation and 

backpropagation with transfer learning, as the 

new method was able to perform just as 

comparably in the long run but start from a 

higher accuracy and improve at a higher rate.  

 From a biological perspective, it is obvious 

that there are no mechanisms in the brain that 

are conducting principle component analysis. 

However, part of the basic principles of the 

weight transport problem are that there are no 

mechanisms for the brain to transfer exact error 

or weight information given the current 

understanding of biological neural networks 

(Crick, 1989; Lillicrap et al., 2016). However, if 

it is observed at a higher and lower level that 

brains can transfer some type of learned 

representations of information to help with new 

tasks and domains, then it must be conducting 

this in a way that is effective yet consistent with 

the weight transport problem. 

It was from this interplay of ideas that the 

proposed method arose. PCA was merely a 

means to create a lower dimensional 

representation of previously learned information 

from which a feedback matrix could be created 

that satisfies both: the inherent idea of 

preserving important information for learning 

new tasks, and not relying on the precise transfer 

of weights.  The implantation of this idea 

showed that the method was able to be relatively 

successful within the two domains that were 

chosen for this study.  

However, it is quite possible that PCA was 

not the most accurate or efficient method for 

dimensionality reduction. Further 

experimentation in this direction may be 



worthwhile, especially drawing from other work 

that also use latent representations of weight 

parameters for learning such as work done by 

Praider et al. (2018). This would be in addition 

to experimenting with performance 

improvements in deeper networks, higher 

dimensional data, and different ways to draw 

random distributions in the latent space. If 

consistently improved results can be reported 

empirically, it would also be of use in the future 

to more concretely formulate mathematically the 

behaviour being observed. On the other side of 

the spectrum, it would be useful to do more 

neurological studies trying to understand the 

exact mechanisms at work happening when 

humans conduct transfer learning at the lower 

and higher level. Better insight into this process 

may translate into more meaningful directions 

on which to implement this in artificial neural 

networks. Hopefully the methods described here 

can provide further validation that incorporating 

neuroscience concepts into machine learning 

methods can better the understanding of both 

fields.  
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